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C*-algebras are an esoteric subject —"“the most abstract nonsense
that exists in mathematics,” in Casazza's words. “Nobody outside the
area knows much about it.”

Quanta Magazine: ‘Outsiders’ Crack 50-Year-Old Math Problem.

http://www.quantamagazine.org/

computer-scientists-solve-kadison-singer-problem-20151124



Kazhdan's property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank > 2 (e.g., G = SL,(R), n > 3) and
its lattice [ (e.g., [ = SLn(Z), n > 3) have property (T).
~> [ is finitely generated and has finite abelianization.
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Throughout this talk, I' = (S) is a finitely generated group.

Definition (for discrete groups)
[ has (T) & 3 = k(l,S) > 0 s.t. V(m,H) unitary rep'n and Vv € H
d(v, H") < k™ maxses [|lv — 7(s)v|],

i.e., an almost invariant vector v is close to an invariant vector Projqr(v).

@ Property (T) inherits to finite-index subgroups and quotient groups.

@ 7 (or any infinite amenable group) does not have property (T).

\/ﬁl[*/ﬂk] € (2(Z) is asymp. Z-invariant, but ¢>(Z)* = {0}.

~> Any f.i. subgroup of a property (T) group has finite abelianization.
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An application of property (T): Expander graphs

Definition
A finite connected graph X is an e-expander if for VA C X (vertices)

0A] > e|A|(1— {5)).

[ [ (Non—)example of T |~
T an expander graph T

I I |
] e ]
T 1

[
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Definition

A finite connected graph X is an e-expander if for VA C X (vertices)

0A] > e|A|(1 — {5)).

(Non-)example of T [
an expander graph T

@ For Ni(A) :={x € X :d(x,A) < k}, 1
INVk(A)| > (1 + £)|A| until it reaches 3|X]|.
After that [N (A)°| decreases by a factor 1+ 5.

@ Random walk on X has mixing time O(log |X]).

@ Want large e-expanders with degree and ¢ fixed.

Explicit construction of expanders (Margulis 1973)

= (S) and N<T a finite index normal subgroup
~> X = Cayley(I'/N, S), where Edges = {{x,xs} : x € [/N, s € S},
is a k(I", S)?-expander.
Eg.,l=SL(3,Z), S={l+E;:i#j}, and Xq =SL(3,Z/qZ), q € N.

? Whatif Sp={/+pEj:i#j}and X, ,=SL(3,Z/qZ), q Lp?
2/9



Some examples of property (T) groups

@ SL,(Z), n> 3, (Kazhdan 1967), but not SL»(Z).
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o Aut(F,), n > 4. (Kaluba—Nowak-0., K-Kielak-N., Nitsche 17-20).
F, — Z" abelianization ~» Aut(F,) — Aut(Z") = GL,(Z).
~» Aut(F2) does not have (T). Neither Aut(F3) (McCool 1989).
I The proof is heavily computer-assisted. g\e agé BV

Product Replacement Algorithm (Celler et al. 95, Lubotzky—Pak 01)

Aut+(F ) = (Rij, Lij) <index 2 Aut(F,), where F, = (g1,...,gn) and
Rij:(g1,---.8n) > (81,---,8i-1,8i8>&i+1,---+8n)
L,-,j: (815---:,8n) — (&1, ,8i—1,8)8i 8i+1---»8n)-
PRA is a practical algorithm to obtain “random” elements in a given finite
group A of rank < n via the PRA random walk
Autt(Fp) ~ {(h1,...,h)) €N A= (hy,..., h,)}.




Noncommutative real algebraic geometry of property (T)

Hilbert’s 17th Pb: f € R(xq,...,xq), f > 0 on R
(E. Artin 1927) = f =Y, g° for some gi,...,8k € R(x1,...,xq).
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@ Y(m, H) unitary rep'n, w(>_; £*f;) = >, n(fi)*n(f;) > 0 in B(H).
@ C*[I'] the universal enveloping C*-algebra of R[I].
Laplacian: For I = (S),

A= s(l—5s)"(1—5)=2|S| =Y cs(s +s71) € Z2R[r].
Then, (m(A)v,v) => s |lv — 7(s)v]/* and

[has (T) <= A >0 Y(mH) Sp(n(A)) C {0}U[N o) —o—r
<= I\ >0 suchthat A?— XA >0 jin C*[I] )
t—At>0

~ k(I,8) > /A/|S|
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Algebraic characterization of property (T)
Let [ = (S).
R[] real group algebra with the involution (3, ast)* = >, art ™2
PAR[M = {3, f*fi} = {2y Puyx~ly i P e M{}
Here MF“ finitely supported positive semidefinite matrices.
A=Y s(1—s)*(1—s) e R[]

C*[T] the universal enveloping C*-algebra of R[I].
Then,

[ has (T) <= 3 > 0 such that A2 — AA >0 jin C*[[]
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R[] real group algebra with the involution (3, ast)* = >, art ™2
PAR[M = {3, f*fi} = {2y Puyx~ly i P e M{}
Here MF“ finitely supported positive semidefinite matrices.
A=Y s(1—s)*(1—s) e R[]

C*[T] the universal enveloping C*-algebra of R[I].
Then,

[ has (T) <= 3\ > 0 such that A% — AA >0 | in C*[I]

Theorem (O 2013)

[ has (T) <= 3\ > 0 such that A2 — \A =0 j in R[T]

Stability (Netzer—Thom): It suffices if I\ > 0 3@ € Z2R[[] such that
|A% — XA - O|1 < A
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Semidefinite Programming (SDP)

[ has (T) <= 3X > 0 such that A2 — \A € ¥°R[l]
= 3EETM3N>0st. A>—NA e (), Peyxly:PeME}
By fixing a finite subset E € I', we arrive at the SDP:

maximize A
subject to A% - \A = Zx,yeE Peyx7ty, Pe M‘E
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E := Ball(2) = {e} US U S? = supp A Usupp A2
~~ Size of SDP: dimension |E|? and constraints |[E~1E| = | Ball(4)].
Certification Procedure:
Suppose (Ao, Pp) is a hypothetical solution obtained by a computer.
Find Py ~ Q" @ (with Q1 = 0) and calculate with guaranteed accuracy

1A% = XA = 37, (@ Q)xy(1 = x)"(1 = y)[l1 < Ao

@ Solving SDP is computationally hard, but certifying (T) is relatively easy.
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Mhas (T) <= 3EET A >0st. A= NA e {>,  Poyx'y: PeMf}
Results of SDP for £ = Ball(2). )

@ SL,(Z) with S ={ejj: i #j}: A3 >0.27, Ay > 1.3, X5 > 2.6.
(Netzer—Thom 2014, Fujiwara—Kabaya 2017, Kaluba—Nowak 2017)
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Aut™t(F,) has property (T) for
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@ n = 4 (Nitsche 2020, by a new SDP method)

7/9



“But they (= computers) are useless.

They can only give you answers.”
Pablo Picasso, 1968.

Revista Vea y Lea, January 1962



Mhas (T) <= 3EET A >0st. A= NA e {>,  Poyx'y: PeMf}
Results of SDP for £ = Ball(2). J

® SL,(Z) with S ={ej: i #j}: A3 >0.27, Ay > 1.3, Xs > 2.6.
(Netzer—Thom 2014, Fujiwara—Kabaya 2017, Kaluba—Nowak 2017)
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o Autt(Fs): () () () No response.

o Autt(Fs): IOAGAG! YESHU! with A > 1.2.

Aut™(F,) has property (T) for

@ n=>5 (Kaluba—Nowak-0. 2017)

@ n > 6 (Kaluba—Kielak-Nowak 2018, by “stability” explained below)
@ n =4 (Nitsche 2020, by a new SDP method)
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Property (T) for an infinite series (KKN 2018)

Ch=Aut™(F,), Sp:={Rij, Lij:i#Jj}, En:={{i,j}:i#j}
Want to show A, =3 . s 1—s satisfies A2 — X\,A, = 0.}

An — ZCGEn Ae,
A% - Zc Ag + Zewf AeAf + chf AeAf
—: Sq, + Adj, + Op,.
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Property (T) for an infinite series (KKN 2018)
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