@ FHEMEASD

lT" THE HONG KONG

NJ UNIVERSITY OF SCIENCE

AND TECHNOLOGY

Deep Generative Learn
Application

Prof. Yang Wang
Email: yangwang@ust.

The Hong Kong
University of Science
and Technology

Generative Adversarial Nets (GAN)

7

0000006 0Q@2p0O0YL 00O

. A T T U T2 B A U I B RV

» Groundbreaking work by lan Goodfellow et al (2014) 2222922220122 22
. . . . 3333333%%3333333

» It tried to address the following question: Given a set U4 4499 gaddssyy
of data (say, a set of human faces or Van Gogh 555855 $S 5595855455
paintings, can we generate data that are “similar”? bbb lbbbbacsteiboel
T 797777107201 2RFT7 77

» The authors have proposed GAN, which uses two yer:®88F5 58P TTYECD
4999499%94%494919 9

neural networks “competing against” each other to
obtain desired outcome

» Yann LeCun has called “this (GAN) and the variations B
that are now best interesting idea in the last 10 years @&
in ML, in my opinion.” '

An example: Image inpainting /

colorization

Input Output

“A lack of information
cannot be remedied
by any mathematical
trickery.”

Lanczos, Cornelius.
1964. Linear
Differential Operators.

It is almost impossible if we restrict ourselves to one single image.

i

gy O g T UG T) AT T N TN T S R A VR YR
LRATATATRTTALY 3 ¢ LN “ MELe D S N S

di&% &

7

778

W
-

e
[

ARTS

Art & Design

Please pay attention to the signature:
ming maxp [E; [log(D(z))] + E.[log(1 — D(G(z)))]]

Edmond de Belamy, sold on Oct 25, 2018

Mathematical Art at HKUST

Leveraging Big Data

GAN: Basic Ideas

» Given a training set X, e.g. X = set of dog images, we shall assume X contain samples
drawn from an unknown distribution py (x)

» We would like to learn py(x) from samples in X. But how?

» Starting off with random noise z ~ N (0, '), we try to find a function G so that the
distribution g of G(z) approximates the distribution py

» Once we find G, from any random sample z ~ N(0,1) we obtain a generated sample
G (z) that should look like something from X

The vanilla GAN by Goodfellow et al achieves this via:

= Approximate G using a neural network

" [ntroducing another neural network D to “compete against” G so that G will continue to improve

" The “competition” between ¢ and D is in the form of a minimax optimization of a loss function

Vanilla GAN

rr(l;in max V(D,G)
- mGjn mlglx ExNPX[log(D(x))] + Ew~1v(o,1) [log(1 — D(G(W))]
Training set V Discriminator

// Real "GANSs are the

{ _ most interesting
Fake idea in the last

10 years in ML"

vy

Random
noise

- Yann LeCun

= Fake image

Generative Adversarial Networks. Source: Google Images

Training the Vanilla GAN

Algorithm: Alternating the following two steps

1. Given the generator G, optimize the discriminator D:

mlglx Ex~pX[log(D(x))] + EZ~N(O,I) [log(1 — D(G(Z))]

2. Given the discriminator D, optimize the generator G :

mGjn Exp [10g(D(x))] + E;n(o,n[log(1l — D(G(Z))]

mGin EZ~N(O,I) [log(1 — D(G(Z))]

* Log-D trick: replaces Step 2 by

mGin E, nonl—logD (G (Z))]

Mathematics of GAN: Minimizing Divergence

We are essentially trying to find a function (¢ so that the distribution g, of G(z) is close to
the unknown target distribution py, where z~N (0, I).

There are two important questions here:

* What do we mean by two distributions py and g, being close to each other?
* We have no explicit expression of py, how do we quantify how close is g, to py?

Divergence: A metric for probability distributions

Let p(x) and g (x) be two probability distributions (for simplicity they are density functions)

* Kullback-Leibler Divergence: Dy (pllg) :Eﬂﬁwp[log(zgg)] = Jron log(zg)p(w)dw

* Jensen-Shannon Divergence: D ;g(p|lq) = Dy (p||M) + Dgs(q||M) M = %(er q)

There are other divergences

Mathematics of GAN: Minimizing Divergence

It is proved that for vanilla GAN

min max Ey.p, [10g(D ()] + Ez-non[log(1 — D(G(2))]

IS equivalent to
ming Dys(px|/qc)

The beauty of the vanilla GAN objective is that it has converted the minimization of JS-divergence
into a minimax involving expectations.

» Minimizing JS-divergence (or KL-divergence) directly without knowing py and G explicitly is
highly nontrivial

» The expectations, however, can be estimated by (mini-batch) sample averages. E.g. given D (x)

Expy[10g(D ()] ~ ~ K, log(D (x))

where x; are samples drawn in the training dataset X

f-Divergence

While vanilla GAN minimizes the Jensen-Shannon divergence, there are many other
divergences one can use for GANs. A more general framework is f-divergence.

Let f(t) be any strictly convex function with (1) = 0. The f-divergence between
two probability distributions p and ¢ is
g\xr
) =11 Jpte) de

Df(C.IHp) _ECIJN]?[(

* Why is it a divergence? It follows from Jensen’s Inequality

Dyi(alp) > f(Bay[22]) = (

p(x)

f-GAN: Minimizing f-Divergence

GANSs can be trained by minimizing f-divergence (f-GAN)
ming Dy (px||qc)

Like for the Jensen-Shannon divergence for vanilla GAN, there is an equivalent
dual version of this minimization

mGin mTaX Ex~pX[f(T(x))] — EZ~N(O,I) [(T(G(2)))]

where [is the convex dual (Fenchel dual) of f.

» With the dual version, expectations can now be estimated by (mini-batch) sample averages.

» Both G(x) and T (x) will be modeled by neural networks, thus we write G(x) and T (x) as
Gg(x) and T, (x), where 8 and w are neural network parameters.

» The parameters are optimized by SGD.

f-GAN: Minimizing f-Divergence

» The dual model solves the minimax optimization problem

min max E

o ” x~pX[f(Ta) (X))] o EZ~N(O,I) [f*(Ta) (GH (Z)))]

» Actually we often encounter the same problems (i.e. vanishing gradient, mode
collapse, etc) in training for f-GAN as we do with vanilla GAN.

» Sois there a better way to train GAN so it is more stable?

» Turns out there is a way to directly solve the primal minimization problem
ming D¢ (px||qe)
where g is the distribution of Gy (z), with z~N (0, I).

» Our Variational Gradient Flow (Vgrow) method does just that, and it proves to offer
a much more stable method for training GAN.

GAN and f-divergence (2018)

PVILR Proceedings of Machine Learning Research

Volume 97 All Volumes JMLR MLOSS FAQ Submission Format & 10.0 =
Deep Generative Learning via Variational Gradient Flow N
[edit] 50 -
Yuan Gao, Yuling Jiao, Yang Wang, Yao Wang, Can Yang, Shunkang Zhang ; Proceedings of the 36th International
Conference on Machine Learning, PMLR 97:2093-2101, 2019. e
0.0 A
/!
f-D1v f(u) f” (u)
KL u log u é 5.0
e) u+1
JS (u+1)log *5= +ulogu == 75
| LOGD (u+1)log(u+1) —2log2 —5 | oob
= =100 =75 =50 ~—2.3 0.0 2.5 5.0 i 10.0
JEFFREY (u — 1) logu .
u

Primal Minimization --Variational Gradient

Flow (VGrow)
Goal: Directly solve ming Dy (px1|qs)
Idea: Use variational gradient wrt qg, where recall that g4 is the distribution of

Go(z), with z~N(0,1).

Step 1. Update Gg_(z) via functional gradient G, = Gg, + 5 - hy, wheres >0 and

ho = — 5 Df(PXH(JH)|9:9n: —f'(r)Vr

Step 2. Update 0 of the generator G4 via r(z) = %()

2

0,1 = argminy Zf\il HGQ(ZZ') — Gp(2)
where z;~N (0,).

Density ratio estimator

Al Art (2019)

Training data: 11,170 portrait paintings at 256x256 resolution

* L i

Demo of mode collapse

10.0 - 200
7.5 - 7.5 7
5.0 - - %0
2.5 - - 2.5 7
0.0 - - 0.0 -
-25 —-2.5
-5.0 -5.0
-7.5 -7.5
~10.0 . : : : . . .) - ~10.0 . . Y . . ' Y . -
-100 -75 -50 -25 00 25 50 75 10.0 -100 -75 -50 -25 00 25 50 75 100

Ground truth Vanilla GAN

Deep Generative Learning via

Schrodinger Bridge (2021)

PIVILR Proceedings of Machine Learning
Research

Deep Generative Learning via Schrodinger 2=
Bridge 00

Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, Can Yang Proceedings of the 38th International
Conference on Machine Learning, PMLR 139:10794-10804, 2021. —2.3 1

—10.0 | | | | | L] | 1"
-100 -75 =50 =25 0.0 2.5 5.0 7.5 10.0

-~ l! > .t e

Schrédinger Bridge Problem (SBP) ¢ t ' '

15

* A large number of independent particles in R? are
observed. 2 :
e t=0,ux) =qgx)dx;t =1, v(X) = p(x)dx.
 SBP aims to find the one which is closest to the \)
Brownian motion. e O
e (Dai Pra, 1991): .] i T
* . 1 2 N \ N
u; () € argmingeyE | | 5 llugll* de|, o o_
o _
. t dx; = u,dt + /rdwy, o \-‘: -
| xXo~q (%), X, ~p(X). s ———————————
* U is the set of controls with finite energy, that | . (—\
satisfying the above condition. | /' |
Valentin De Bortoli, James Thornton, Jeremy Heng, Arnaud Doucet N :m_ \)

Diffusion Schrédinger Bridge with Applications to Score-Based Generative Modeling, NeurlPS202¢ =~ ° ~ ~ ~ =~ = = * > ‘& %
https://vdeborto.github.io/publication/schrodinger_bridge/

Deep Generative Learning via
Schrodinger Bridge

As the underlying distribution is difficult to learn, we first smooth it with
45 (X), 4o (X) = [Paata (V) P, (X — y)dy is a smoothed distribution of

Dgata (X), Where @ (X) is the density of N (0, o°I)

Sampling algorithm

 Stage 1: dx, = tW l0gE,-o - |f (X + V1 — tz)]|dt + VTdw,, t € [0,1].

Let X0~ (¥), then X, ~q, (). (£ (x) = 3=5).

e Stage 2: dx, = 02V, log ‘Nrews _(x¢)dt + odwy, t € [0,1]. Let Xg~q, (%),
then X; ~Pgata (X).

* With the two estimators f (x) ~ log cg“(éz)
NG

10, |, we can use the Euler-Maruyama method to solve the SDEs.

and S$(x;6) = V, log gz(X), 6 €

dx, = 0%V log q 7=, (X)dt + odw,
Stage 2]

° dx; = tV; logIEz~q,ﬁ

[f(x; + V1 —tz)]|dt + VTdw, ;
Stage 1 B ¢

Theoretical results

Theoretical results: we proved that

* Drift terms can be estimated consistently.

v/
Ny
/’:

. — — - P ‘ -

A s e SONNV /Y N\ ST

. —_—— e v 4~
» - T
/ . v, 1 4

- ! > L S -

\ Y o e
. a N /- _— e
Lot~ A ¥ p . — 4
‘:\ & -l
B | U el N N
A \’//‘\\\114 /1.,,"\\\,\\
} A /S ox -~ N
A nr ;o T '\
- W Y o -— //» B . = 4-\\
—_ , . — 7 > 4 9 L0
- v TSN . L T N W ///f\\f/f\\\\

Estimated drift terms of stage 1 and stage 2 in 2D example.

Theoretical results

* Theorem (Consistency of the density ratio estimator)

Assume that the support of pg.4(X) is contained in a compact set, and

density ratio f(x) = cg"(éz)
NG

depth D, width W and size 5 of NN, as
d a2
D = 0(log(n)), W =0 (n2(2+d) log(n)_l),S =0 (nd+2 log(n)‘B).

Then [[Hf(x) — f(X)HLZ(pd t)] — 0 asn — oo, where d is the

dimensionality of data, n is the number of sample used to train the
estimator.

Is Lipschitz continuous and bounded. Set the

Technical theoretical results

* Theorem (Consistency of the score estimator)

Assume that the support of pga.4(X) is differentiable with bounded
support, and V, lo § g=(X) is Lipschitz continuous and bounded for
(6,x) € |0, g XIR Set the depth D, width W and size § of N’V as

d
D = 0(log(n)), W =0 (max {n2(2+d) log(n)~1 d})
S=0 (dngllé log(n)~3)

Then [E [||||§9(X' 6) — V. log g=(X)|l H 12(qs)] — 0 asn — oo, where

d is the dimensionality of data, n is the number of sample used to
train the estimator.

Theoretical results

Theoretical results: we proved that

* (Consistency of proposed algorithm, informal) Under some mild
smoothness assumptions of the target distribution,

- [WZ (Law(xoutput): pdata)] - 0,

as the number of samples for training and estimating drift terms, width,
depth and size of neural networks and discretization steps of the Euler-
Maruyama method go to oo.

Technical theoretical results

 Theorem (Consistency result of our method)
Let D, (t,x) =V, logIEZNq,ﬁ[f(x + V1 — tz)_, D,(t,x) =V, log qmg(x).

Denote h,; +(X1,X;) = exp (

Ix411%

2T

) Pdata(X1 + 0X3).

Under the following assumptions:
1. supp(pgata) is contained in a ball with radius R, and pg4ta > ¢ > 0 on its support;

2.
3.

0,1

D;(t,x)[|1* < C{(1 + ||x]|?), VX € supp(Pgata), t € [0,1], where Cy is a constant, i = 1, 2;

D;(t1,%X1) — D;(t2, x)1? < Co(l1x1 — X3 || + |t1 — t5]Y?), VX4, X, € supp(Pgata), t1, tz €
|, where C, is another constant;

4. hg(X1,X3), Vx, hg(X1,X3), Pdata and Vpgaea are L-Lipschitz functions;

[E[WZ (Law(xoutput),p ata)] — 0, asn, N, N,, N; = 00, where n is the number of samples used
to train the estimators, N; and N, are number of discretization steps in the Euler-Maruyama
method of two stages, N5 is the sample size for estimating the expectation in the drift term in
stage 1.

Oscillation in GANs

Source: https://theaisummer.com/gan-computer-vision/ -
Our sampling procedure

MODELS FID IS
WGAN-GP 36.4 7.86x0.07
SN-SMMDGAN 25.0 7.310.1
SNGAN 21.7 8.22+0.05
NCSN 25.32 8.87x0.12
OURS 12.32 8.144-0.07

FID and Inception Score on CIFAR-10.
FID: lower is better;
IS: higher is better

Some recent diffusion models have achieved
comparable or even better performance.

w :
. N 4 ’)
: ' . . 4
- » : < :
“ - .
o Y .
- ’ . | - - . .
“ .)
-

- ' e \‘
o i > P I ‘

S8 & " AN ET,
D) 36 Sl 9
CA YRR l] 15D
DAL Eis

k3. 7
g8 LIRS

(ERLART 6
okl 3% U5 S,
OELIERGER

Experimental results (Image interpolation) ¢

—— —

Seee

Pdata (X)

Pdata (X)

Experimental results (Image inpainting) <

Thank youl!

Understanding of GAN

generated distribution true data distribution
<
unit gaussian/ 1(2)
generative
Q model y
|| (neural net) % |1958| o

Image space

\ image space

min D(q(2)[|p(z))

Variational Gradient Flow (VGrow)

* Consider a batch of particles {z;},i=1,..., n with distribution ¢(z)
* Update these particles {z:} by a small amount (preserve continuity),

T(Z) = Z+ S - h(Z) hiz)=—f"(r(x))Vr(z)

such that the distribution of {T'(z;)}, denoted as §(z), is closer to p(z),
the distribution of {z;}

Dy(q(2)||lp(x)) < Dyg(q(2)||p(x))

Training GAN (Log-D trick)

* Alternating the following two steps:

1. Given the generator G, optimize the discriminator D:

mgx ExNPX(x)[logD (x)] + EW~N(0,1) [log(1 — D(G(W))]

2. Given the discriminator D, optimize the generator G:

Min Eypy () [108D ()] + Ey-non[log(1 — D(G (W)

= mGin Evw-neo,nllog(1l — D(G(W))]
* Log-D trick:

mGin Ew-neo,nl—logD (G (W))]

Mathematics of GAN: Minimizing Divergence

It is proved that for vanilla GAN

mGin max Ex-pyl10g(D(x))] + Ew-nco,n[log(1 — D(G(W))]

IS equivalent to

ming Djs(px||qc)

» WHY does the log-D trick works?

